Optimal Layer Reinsurance for Compound Fractional Poisson Model
نویسندگان
چکیده
منابع مشابه
Dynamic Proportional Reinsurance and Approximations for Ruin Probabilities in the Two-Dimensional Compound Poisson Risk Model
We consider the dynamic proportional reinsurance in a two-dimensional compound Poisson risk model. The optimization in the sense of minimizing the ruin probability which is defined by the sum of subportfolio is being ruined. Via the Hamilton-Jacobi-Bellman approach we find a candidate for the optimal value function and prove the verification theorem. In addition, we obtain the Lundberg bounds a...
متن کاملOptimal Dividend Problem for a Compound Poisson Risk Model
In this note we study the optimal dividend problem for a company whose surplus process, in the absence of dividend payments, evolves as a generalized compound Poisson model in which the counting process is a generalized Poisson process. This model includes the classical risk model and the Pólya-Aeppli risk model as special cases. The objective is to find a dividend policy so as to maximize the ...
متن کاملAlternative Forms of Compound Fractional Poisson Processes
and Applied Analysis 3 where the first term refers to the probability mass concentrated in the origin, δ y denotes the Dirac delta function, and fYβ denotes the density of the absolutely continuous component. The function gYβ given in 1.5 satisfies the following fractional master equation, that is, ∂ ∂tβ gYβ ( y, t ) −λgYβ ( y, t ) λ ∫ ∞ −∞ gYβ ( y − x, t ) fX x dx, 1.6 where ∂/∂t is the Caputo...
متن کاملFractional Poisson Process
For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...
متن کاملClaims Reserving Using Tweedie’s Compound Poisson Model
We consider the problem of claims reserving and estimating run-off triangles. We generalize the gamma cell distributions model which leads to Tweedie’s compound Poisson model. Choosing a suitable parametrization, we estimate the parameters of our model within the framework of generalized linear models (see Jørgensen-de Souza [2] and Smyth-Jørgensen [8]). We show that these methods lead to reaso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2019
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2019/2150878